Christopher R. Collins

chris@crcollins.com Chttps://github.com/crcollins https://crcollins.com

Education

Carnegie Mellon University

Ph.D. in Theoretical/Computational Chemistry Using Machine Learning and Molecular Similarity to Predict Chemical Properties

Carnegie Mellon University *M.S. in Chemistry*

Carnegie Mellon University *M.S. in Machine Learning*

University of North Georgia

B.S. in Chemistry with Chemical Physics Concentration

Research

Carnegie Mellon University

Graduate Student; Advisor: David Yaron

- Developed parallel and distributed code for optimizing INDO parameters with SGD (50x speedup on 60 core cluster)
- Achieved state-of-the-art performance predicting polymer properties with deep learning with multi-task regression
- Invented new molecular descriptors that reduced previous prediction errors by 50% while reducing $O(n^2)$ storage costs to O(1)
- Implemented ranking heuristic for global minimum energy conformation search using kernel ridge regression
- Developed method for predicting atomic forces using by differentiating LSTM-based energy models
- Examined LASSO regression model for feature selection in Density Functional Theory Model
- Managed two groups of ML masters students on big data term projects (one active learning and the other multilabel/ranking classification)
- Built semi-supervised ML pipeline to map functional brain regions from fMRI data
- Built interpretable models for analyzing experimental data involving iridium catalysts

University of North Georgia

Undergraduate Researcher; Advisor: Aimée Tomlinson

- Researched Benzobisazole Cruciform structures using DFT for use as efficient organic solar cells
- Built set of tools to automate research process (reduced hours of work to minutes)
- Formulated SVM model for predicting Benzobisazole properties (~300,000x faster with comparable accuracy to similar methods)

Carnegie Mellon University

Undergraduate Researcher; Advisor: David Yaron

- Researched decomposition of Thiaphospholes using quantum computational methods
- Wrote MATLAB code to automate running Gaussian/AMPAC calculations and parsing results
- Wrote code to calculate molecular overlaps and generate molecular orbital diagrams
- Created routines to draw structures with molecular orbital overlaps indicated on each atom

Pittsburgh, PA 2014 – 2019 Expected

Pittsburgh, PA 2019

Pittsburgh, PA 2018

Dahlonega, GA 2010 – 2014

Pittsburgh, PA 2014 – Present

Dahlonega, GA 2011 – 2014

2011 - 2014

Pittsburgh, PA Summer 2013 Google, Inc. Software Engineer

Google, Inc.

Software Engineering Intern; Host: Laura Book

- Wrote design doc to plan, scope, and compare options for a new ML pipeline for the Keyword Suggestion Service (KSS)
- Implemented and deployed 4 ML pipelines built on TFX and other tooling
- Built C++ client interface to ML models
- Instructed other teams on TFX best practices

Google, Inc.

Software Engineering Intern; Host: John Tantalo

- Implemented and deployed library for path critical data transfer format (all traffic in Google Shopping)
- Developed code generation code with multiple target languages (Python, Java, C++) for data format API
- Developed design documents for further migration to library

Tripwire, Inc.

Engineering Intern

- Rewrote entire test suite for Benchmark product using Selenium and PyTest (Python)
- Aided in migration of critical IP360 product and wrote automated test suite for API
- Maintained and expanded installation automation for CCM product
- Wrote automated script to test for CSRF and XSS vulnerabilities in IP360 web application

TECHNICAL SKILLS

- Proficient Languages: Python 2/3, C, C++, MATLAB, Octave, Javascript, Bash, Java, Mathematica, LATFX, HTML5, SQL
- Familiar Languages: Go, CUDA C, TI-BASIC, CSS, Maple, Haskell, Custom ASM, x86 ASM, Ruby
- Software: *nix (Linux, Centos, FreeBSD, AIX, Solaris), Vim, Gaussian/AMPAC, Git, SVN, SSH, rsync, coreutils, Make, Logisim, Vagrant, PostgreSQL, Varnish, Hadoop, MapReduce, Spark, AWS, nginx, Apache, Torque, ab, LabVIEW, Pig/GuineaPig
- Libraries: NumPy, SciPy, Matplotlib, Scikit-Learn, Pandas, Django, CVXPY, CVX, Keras, PyBrain, Caffe, Protobuf, Jinja2, TensorFlow, Tensorflow Extended (TFX), Theano, Selenium, Paramiko, PyTest, Bootstrap, jQuery, jQueryUI, Swig, SDL, OpenMP, OpenMPI, SCIP, Alamo

SIDE PROJECTS

- MolML (https://github.com/crcollins/molml)
 - Library to extract features from molecules
 - * Extracts features at the atom, molecule, fragment, kernel, or crystal level (~20-30 descriptors)
 - Parallel feature generation
 - * Automated transformation saving/loading/packaging
 - Full automated testing suite (100% code coverage)
- Chemtools/Chemtools-Webapp (https://gauss.crcollins.com)
 - Implemented a set of tools for use in Benzobisazole research
 - Gaussian log output parser to collect molecular properties
 - * Machine learning model to predict polymer properties from oligomers
 - Molecule graph detector/classifier
 - * Benzobisazole structure generator and machine learning predictor for optoelectronic properties

2

Los Angeles, CA Summer 2018

August 2019-

Mountain View, CA

Alpharetta, GA 2012 - 2014

Pittsburgh, PA Summer 2017

- * Supercomputer job submitter and curator
- Full automated testing suite (over 95% code coverage)
- Python/Django Application with a Bootstrap front end
- Vagrant VM build system
- pyOS
 - Implementation of a *nix like operating system using Python
 - Created shell similar to Bash Shell
 - Reimplemented standard Unix programs (cp, mv, rm, ls, etc)
 - Included permissions, pipes, multiple users, and a virtual file system
- Dragonfly (https://github.com/dragonfly/dragonfly/)
 - Library to do scalable Bayesian optimization
 - Made pip installable
 - Restructured test code to be usable
 - Added continuous integration support for multiple Python versions and platforms
- Other
 - 8 bit CPU (Logisim)
 - Mandelbrot/Buddhabrot Generator (Python, Javascript, C/C++, CUDA C, TI-BASIC)
 - Various Quadtree Visualizations (Python, C/C++ , Javascript)
 - Cellular Automata Based Electronic Simulation (Javascript)
 - Object Relation Management Library (Python/SQL)
 - University Course Scraper (Python)
 - Cryptography Library (Python, Logisim)
 - Automated Peer Review System Web Application (Python/Django)
 - Virtual Cluster and Server Architecture Vagrant Builds
 - Resident-Hospital Matching Program (Python, SCIP)
 - Malloc (C)
 - Terminal Text Editor (C)
 - LC-3 Virtual Machine (C)

Courses

- (UNG) Linear Algebra
- (UNG) Intro to MATLAB
- (UNG) Intro to Cryptography
- (UNG) Differential Equations
- (UNG) Computational Methods in Physics
- (Udacity) Intro to Parallel Programming
- (CMU) Convex Optimization
- (CMU) Machine Learning
- (CMU) Statistical Machine Learning
- (CMU) Graduate Artificial Intelligence

- (CMU) Deep Learning
- (CMU) Machine Learning with Large Datasets
- (CMU) Deep Reinforcement Learning and Control
- (CMU) Data Analysis
- (CMU) Intermediate Statistics
- (CMU) Quantum Chemistry
- (CMU) Special Topics in Computational Quantum Chemistry
- (CMU) Computational Chemistry

Publications

- Kandasamy, K.; Vysyaraju, K. R.; Neiswanger, W.; Paria, B.; Collins, C. R.; Schneider, J.; Póczos, B.; Xing, E. Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly. *Submitted JMLR*. 2019. https://arxiv.org/abs/1903.06694
- Li, H.; Collins, C. R.; Tanha, M.; Gordon, G. J.; Yaron, D. J. A Density Functional Tight Binding Layer for Deep Learning of Chemical Hamiltonians. *J. Chem. Theory Comput.* 2018. https://arxiv.org/abs/1808.04526

- Li, H.; Collins, C. R.; Ribelli, T. G.; Matyjaszewski, K.; Gordon, G. J.; Kowalewski, T.; Yaron, D. J. Tuning the Molecular Weight Distribution from Atom Transfer Radical Polymerization Using Deep Reinforcement Learning. *Mol. Syst. Des. Eng.* 2018. https://arxiv.org/abs/1712.04516
- Collins, C. R.; Gordon, G. J.; von Lilienfeld, O. A.; Yaron, D. J. Constant Size Descriptors for Accurate Machine Learning Models of Molecular Properties. *J. Chem. Phys.* 2018. https://arxiv.org/abs/1701.06649.
- Collins, C. R. ; Yaron, D. J. Developing Coarse-Grained Site Models for Excited Electronic States of Conjugated Polymers. *SPIE* 2015.
- Qiu, Y.; Worch, J. C.; Chirdon, D. N.; Kaur, A.; Maurer, A. B.; Amsterdam, S.; **Collins, C. R.**; Pintauer, T.; Yaron, D.; Bernhard, S.; Noonan, K. J. T. Tuning Thiophene with Phosphorus: Synthesis and Electronic Properties of Benzobisthiaphospholes. *Chem. Eur. J.* **2014**.
- Tlach, B. C.; Tomlinson, A. L.; Morgan, K. D.; **Collins, C. R.**; Jeffries-EL, M. Evaluation of the Impact of Extended Conjugation on the Optoelectronic Properties Benzo[1,2-d:4,5-d']bisoxazole Polymers. *Aust. J. Chem.* **2014**.

Presentations and Posters

Building a Scalable Machine Learning Pipeline for fMRI Data CMU 10-7185 Data Analysis Term Project	Pittsburgh, PA 2018
Using Active Learning in Quantum Chemistry to Reduce Experimental Costs CMU 10-805 Machine Learning with Large Datasets Term Project	Pittsburgh, PA 2017
A Data-driven Approach for Selecting Optimal Quantum Chemical Methods CMU 10-805 Machine Learning with Large Datasets Term Project	Pittsburgh, PA 2017
Using Generative Adversarial Networks to Estimate Uncertainty in Quantum Chemical Methods by Exploiting Similarity in Chemical Compound Space CMU Original Proposal	Pittsburgh, PA 2017
Dueling Recurrent Network for Partially Observable Markov Decision Process CMU 10-703 Deep Reinforcement Learning and Control Term Project	Pittsburgh, PA 2017
Accelerating the (Augmented) Roothaan-Hall Method in Solving the Density Functional Theory Problem CMU 10-725 Convex Optimization Term Project	Pittsburgh, PA 2016
Constant Size Molecular Descriptors For Use With Machine Learning <i>Midwest Theoretical Chemistry Conference</i>	Pittsburgh, PA 2016
Constant Size Molecular Descriptors For Use With Machine Learning CECAM Chemical Space Workshop	Zürich, Switzerland 2016
Using Data to Accelerate Quantum Chemical Calculations by Getting Better at Guessing	Pittsburgh, PA
CMU 15-780 Graduate Artificial Intelligence Term Project	2016
Using Machine Learning and Molecular Similarity to Predict Chemical Proper- ties	Pittsburgh, PA
CMU Progress Report	2016
Using Machine Learning and Molecular Similarity to Predict Chemical Proper- ties	Pittsburgh, PA
CMU Chemistry Department Poster Session	2016
Predicting Chemical Properties Using Machine Learning Methods CMU Chemistry Department Retreat Poster Session	Farmington, PA 2015

The Influence of Chemical Representations on the Efficiency of Molecular Screening	Pittsburgh, PA
CMU Graduate Seminar	2015
A Mission to Multivariate Adaptive Regression Splines (MARS) and Its Other- worldly Neighbors	Pittsburgh, PA
CMU 10-702 Statistical Machine Learning Term Project	2015
Predicting Chemical Properties Using Machine Learning Methods CMU 10-701 Machine Learning Term Project	Pittsburgh, PA 2014
Application of Machine Learning to Predict the Optoelectronic Properties of Benzobisazoles	Dahlonega, GA
UNG Senior Seminar	2014
Machine Learning in Chemical Compound Space UNG Junior Seminar	Dahlonega, GA 2013
Donor-Acceptor Behavior of Benzobisazole Cruciformic Polymers <i>American Chemical Society Southeastern Regional Meeting</i>	Atlanta, GA 2013
The Impact of Conjugation Length on Benzobisazole Cruciforms <i>American Chemical Society Southeastern Regional Meeting</i>	Raleigh, NC 2012
 Runner-up Undergraduate Poster in Organic Chemistry 	

Teaching

- Teaching Assistant
 - 09-221 Laboratory I: Introduction to Chemical Analysis
 - 09-214 Physical Chemistry
 - 09-101 Introduction to Experimental Chemistry (2 times)
 - 09-103 Atoms, Molecules, and Chemical Change
 - 09-231 Mathematical Methods for Chemists
 - 09-106 Modern Chemistry II (2 times)
 - 09-107 Honors Chemistry
- Weekly Lecture Series in Theory Suite (Organizer)
 - Intro to Python
 - Intro to Bash Scripting (2 lectures)
 - Intro to Object Oriented Programming
 - Intro to NumPy (2 lectures)

Awards

- State Level Technology Literacy Challenge Winner
- SERMACS Runner-up Undergraduate Poster in Organic Chemistry
- 2nd Place Spam Classifier in CMU Machine Learning out of 100.
- CMU Chemistry Department TA Award

Service

- CMU Graduate Student Assembly Representative
- Mellon College of Science Graduate Student Advisory Committee
- Department of Chemistry Social Committee
- Department of Chemistry Student Ambassador
- MellonFit Treasurer and Authorized Signer
- CMU President's Advisory Committee